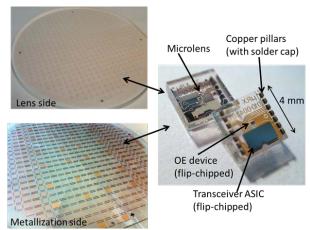
Novel Ruggedized Packaging Technology for VCSELs

Charlie Kuznia


ckuznia@ultracomm-inc.com Ultra Communications, Inc. Vista, CA, USA, 92081

Abstract: We describe chip-scale packaging (CSP) technology for compact, low-cost optical transceivers that contain OTDR technology. CSP creates board-level solder interconnect at the wafer level, eliminating the cost and parasitics as sociated with packages. O TDR technology enables insitu monitoring of fiber links.

Keywords: fiber optics; fiber optic transceivers; vertical cavity surface emitting laser (VCSEL); harsh environment optical interconnects; chip-scale-packaging.

Introduction: Chip-Scale-Packaging for Photonics

Wafer s cale processing of metal interconnect [1]-[2] and optical m icro-lenses [3]-[4] are b ecoming mature technologies that address the need for low cost packaging of electronics and optical components. We describe the use of these wafer scale processes to create micro-scale CSP optical transmitters (μTX) and receivers (μRX), (or μTRX collectively). µTRXs are low-cost, compact components that can be assembled onto the PCB in close proximity to high-performance A SICs using conventional solder-reflow 'pick-and-place' a ssembly. The small PCB footprint and solderability is necessary to ach ieve high-density and flexible p lacement o f o ptical co mponents near t he d ata source/sink. By reducing the routing lengths of high-speed copper wiring, we can achieve low-power, EMI-immune links within hi gh-performance m ilitary computing an d sensor systems.

Figure 1. Chip-scale-packaging of micro-transceiver components.

Figure 1 shows a nexample of a μ TRX assembly. Microlens are formed with gray-scale etching on a glass wafer. The reverse-side of this wafer contains three types of metallization: 1) flip-chip bond pads for attachment of OE devices (such as VCSELs and PINs) and ASICS (such as a VCSEL driver or receiver), 2) routing of signals, and 3) copper pillars with solder caps for soldering to a PCB. The lenses and reverse-side metallization are aligned at the wafer level to sub-micron tolerances, allowing the passive alignment of the OEd evice to the lens with flip-chip bonding. The resulting optical component has a PCB footprint of (4 x 4 mm2). This package has no wire-bonds and has minimum electrical parasitics, and is therefore minimizes the EMI and scales to future data rates.

Integration of OTDR ASICs within EOM

The a vailability of high-speed A SIC technology makes it possible to integrate the functions required to create OTDR measurements on a single chip. Figure 2 shows the OTDR ASIC, code named "NAVCAT", which is the single chip integration of programmable timing circuits that operate up to 1 0 G Hz, a p attern g enerator (arbitrary 2 0-bit p attern) output i n a CML signal format, a nd a four-channel receiver/sampling ci rcuit. The NAVCAT can g enerate pulse widths of 100 ps and sample at 100 ps resolution. Note: the round-trip time for an optical pulse to travel 1 cm in fiber is 100 ps.

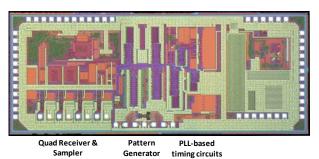


Figure 2: OTDR ASIC "NAVCAT"

In OTDR operation, the NAVCAT generates a pulse on the CML output and samples a receiver channel at an instance corresponding to the distance along the fiber under measurement. The NAVCAT receivers are dual-sampling, which can make pre/post pulse measurements for noise cancelation. The samples are digitized, averaged to increase the signal-to-noise ratio (SNR), and then available for readout on a digital bus. NAVCAT has four receiver channels. When combined with a quad transceiver ASIC capable of

10 G bps (i.e., c ompatible with a 100 ps bit period), the chipset can perform OTDR measurements on the transmit fibers within a quad transceiver module.

The N AVCAT is a gnostic to the optical wavelength or fiber type. Figure 3 shows the general O TDR b lock diagram. The blue blocks are elements normally found within a no n-BIT O TDR capable transceiver. The NAVCAT O TDR function is in serted into the data path with a mux, and the back-reflected light is split into an additional detector (such as a receiver optical subassembly



Figure 3. OTDR ASIC in a general architecture.

(ROSA)).

Successful transition of OTDR functionality i nto E OM transceivers will require packaging compatible with compact assemblies. We present a method of incorporating the OTDR ASIC c hipset into a low-form-factor quad transceiver with data rates of 10 M bps to 12.5 G bps per channel. The rugged vertical connector (RVCONTM) provides a collimated optical beam interface to a "CORE" sub-assembly containing transceiver ASICs, optoelectronic components and sealed collimating lenses. The cross-section shows the packaging of the OTDR chipset, VCSEL, PIN photodiode, and OTDR splitting optics.

Test Results of Quad Transceiver

The technology was used to create a 4-channel Tx and 4-channel Rx f iber o ptic t ransceiver (XCVR) with microcontroller that operates from data rates of 10 Mbps to 12.5 Gbps per channel (see Figure 4). The XCVR is based on a CSP that contains all active elements and the optical coupling system.

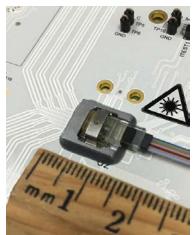


Figure 5. XCVR with CSP technology.

The XCVR meets t he s pecifications for 1 0 G igabit Ethernet (10GBASE-SR) over the temperature range of -40 C t o 95 C. Figure 2 and Figure 3 show the r esults of 10GBASE-SR c ompliance te sting at 10. 3125 G bps da ta rate. T he receiver eye d iagrams are m easured with a n optical i nput power of -11.1 dBm o ptical modulation amplitude (OMA). The typical sensitivity of the X80-QC at 10.3125 is -12.6 dBm OMA.

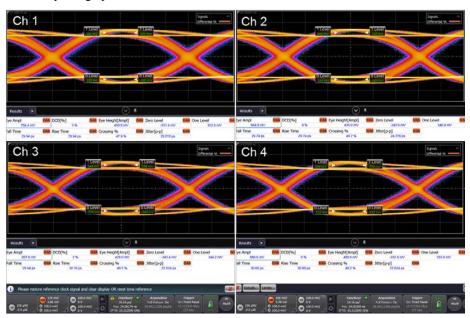


Figure 4. 10GBASE-SR compliance testing on receiver channels with -11.1 dBm (OMA) input.

The tr ansmitter testing a gainst t he 10G BASE-SR ma sk shows a mi nimum 40% mask margin. The transmitter average o ptical p ower was -2.5 dB m in t hese measurements. The VCSEL output is attenuated with a 4 dB attenuation coating patterned in the optical path (on the transmit s ide o nly). To ac hieve increase o ptical p ower output, this attenuation can be reduced.

Conclusion

CSP t echnology enables l ow-cost, e mbedded t ransceivers for short length c ommunications. As fiber becomes more prevalent for short distance links, fiber networks can have a number of short span links (chip-chip, board-to-board, etc). In l arge scale d eployment, t he fiber system may be vulnerable to fiber faults, especially at the connection interfaces. To address the cost associated with fiber system maintenance and to enhance overall network a vailability, ARMY initiated programs to develop built-in-test (BIT) within the transceiver components. B IT cap ability can detect and isolate the faults within the transceiver and along the fiber path allowing for quick and accurate resolution.

Acknowledgements

This work was performed under the following SBIR contracts: Army Research Lab: Michael Gerhold (TPOC), Dept of Energy: Rich Carlson (TPOC), and NAVAIR: Mark Beranek (TPOC)

References

- [1] Chen, K. M., et al. "Cu pillar bump-on-trace (BoT) design for ultra low-k packaging." Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2013 8th International. IEEE, 2013.
- [2] Shi, Yiyu, et al. "IC-Package-System Integration Design." Advanced Flip Chip Packaging. Springer US, 2013. 341-412.
- [3] Kraft, Andreas, et al. "UV replication technology for micro optical applications and bonding challenges using active alignment." Microelectronics Packaging Conference (EMPC), 2013 European. IEEE, 2013.
- [4] Aristizabal, Sergio Lopera, et al. "Microlens array fabricated by a low-cost grayscale lithography maskless system." Optical Engineering 52.12 (2013): 125101-125101.

Figure 6. 10GBASE-SR compliance testing on transmitter channels.